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AN ANALYTIC.METHOD FOR CALCULATING THE TIME-TEMPERATURE HISTORY
OF METAL FOILS UNDER PULSED IRRADIATION AND A GAUSSIAN BEAM PROFILE

by

L. N. Kmetyk and W, F. Sommer

ABSTRACT

Utilization of a pulsed radiation source such as the Clinton
P, Anderson Meson Physics Facility (LAMPF) for materials science
studies requires knowledge of the time-temperature history of a
subject metal foil. We derive an analytic solution to a two-
dimensional heat flow equation, incorporating the LAMPF time
structure and the LAMPF Gaussian beam spot profile. This calcula-
tional method is useful in designing experimental systems for
materials science studies and can be done on a Hewlett-Packard
model 97 desk-top calculator. We compare the results with an
equivalent numerical solution of the same two-dimensional heat
flow problem done on a digital computer.

I. INTRODUCTION

We utilize the 800-MeV proton beam at LAMPF as a source for radiation dam-
age, materials science studies. Materials phenomenon are strongly temperature
dependent. The calculation described here 1s used in the design of experimen-
tal systems to give a theoretical prediction of the temperature history of a
subject foil. Since large temperature excursions during a pulse are not usable
conditions for an experiment, we consider constant physical properties, near the
design point in temperature, for the materials under study. Although our cal-
culations reflect the LAMPF time structure (0.5 ms "on time" at 120 Hz), any
time structure may be analyzed by insertion of the proper values of 1T, the time
between pulses, and Ty the pulse length. We also incorporate a Gaussian beam
profile; typical of the LAMPF beam., We approximate elliptical beam spots by an
equivalent circular area. We assume that a coolant such as flowing water will

maintain a constant temperature (coolant temperature plus film temperature




gradient) at the surface of an emersed foil and at a radius of 303 0 is one
standard deviation. The calculation can be done for any material for which the

physical properties and particle energy dissipation characteristics are known.

II. EQUATIONS

The two-dimensional time~dependent heat conduction equation in cylindrical

coordinates is

3T _1.
€5t " r T T, 2 K° W

The region of interest is a finite cylinder of height £ and radius a, whose sur-
face is held at a fixed temperature To = T(t=0) (Figure 1). Treating the right-
hand side of equation (1) as a source term allows us to write the formal solution

in terms of the Green's function for the homogeneous equation asl

f [ [ stermizatineea" 2 ) 2ttt ()
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Fig. 1.
Foil geometry.




To find the necessary Green's function we use the method of separation of vari-

ables on the modified heat conduction equation

2
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which breaks up into the three ordinary differential equations
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Equation (7) is the standard equation obeyed by Bessel functions of order

zero
2
*2 4R 4 et P -@=0d) R =0, ®)
*2 dr
dr
where r* = crr'. The boundary condition on this radial equation 1is
T (a,z,t) = 0 (or a constant), 9)

giving immediately r” = a «> r* = Os where o is the nth zero of Jo(r*), so

that
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(The zeroeth order Bessel function of the second kind is eliminated since it
cannot satisfy boundedness at r = 0,) The solution to the radial equation is
then

R = DA T (T, (1 '
where the coefficient An is determined from the conditions
R(r"=1) = 6(r"-r) = £(r°) (12)
to be
£(r") = az An Jo (ant—;- )
n

-
a r
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o
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n TTa2 [ J” ]
o

giving finally
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Equation (6) is even simpler in that the solutions are trigonometric rather

than Bessel Functions. Using the boundary condition
Z2(z"=0) = 2(z"=2) = 0

gives the solution

2(z) = Z'Bm sin (:'_1_12‘:_2) ’

.. where the cosines disappear because of the z = 0 condition, and the

z = § condition gives

mw
cfl = mror ¢ = -
z z 2

The coefficients Bm are evaluated using

Z(z =z) = &(z-z") = f£(z°)

to give
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giving finally
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Z2(z,2") = iz in (“‘“ ) sin (“‘}I") (20)

Utilizing the results of equations (10) and (17) allows equation (5)

to be written as

Q@.(t_l - — o P_ _(_)_ -
at” (az+ 22 ) 8(tD), (1)

whose solution is

(t,t7) = zzexp -K[%+-(2—12r)—2] (t-t7) t - (22)
n aw a

Thus the Green's function for this problem is

2_2
G(r,r°3z,z 3t,t7) = —-Lz— exp [- K m12r (t—t')] sin (m'gz) sin (mTTz )
a2 iFl L
J (a —) J (o —)
. TS‘exp [ 2 (t . )] o n a’ ‘o n a . (23)
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ITI. APPLICATION

The LAMPF 800-MeV pulsed proton beam has an elliptically shaped target area
approximated here by a circular area of radius a, Irradiation and heating of a
thin rectangular foil whose edges and surface are held constant at the initial
temperature can be approximated by considering heat conduction and generation in
a finite cylinder large enough that the radial edges see little radiation. The
proton flux for the LAMPF beam is Gaussian in profile and hence can be described

as

2
I(r,z,£) = I(t) exp (- 55 ), (24)

r
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where T, is a constant ( = V2 where o is the standard deviation of the Gaussian

profile) giving the average size of the beam spot and I(t) is a pulsed time
function equal to

0 for t<0
I(t) = Io formtr £ t £ mT+Tl (25)
0 for mT + T, <t £ (m)T ,

where m = 0, 1, 2, +.., Ty = 0.5 ms and T = EE%—EZ. For a net current of 1 mA,

Io is given by

n_/At . n_ /At
I = P = 2, (26)
(o] a 2 2
f 2mrexp (-I= Ydr mr,
2
(o)
o
where np is the total number of protons in a pulse of duration At, given by
e 1maxl00C g gl8 R, 1
" * sec-mA * °° C © 120 pulse/sec
(27)

= 5.233 1003 —B_
pulse

for a net current of 1 mA, If each 800-MeV proton loses an amount of energy
€* per unit distance traversed in the target, and if all this energy is

assumed to produce heat by direct excitation of the lattice, the heat generation

rate per unit volume is

n_/At 2
Q = e —25—— exp --EE (28)
T o



whenever the beam is on, and zero otherwise. To insure that most of the beam

is accounted for we set a = 30 = 2.12132ro (by which time we are using 997 of

the current).

The temperature is given by equations (2) and (23) as

t 22 ol
2 m T n - P -
T(r,z,t)-T X Z exp [- K + 2 ) (e-t )] £(t7)dt
K 'naz.ﬁ = Zn '[ ( 22 az )
(29)
a 2\ J (a a)Jo(a ’y 2 .
x f 2mr” exp n 2 4r’ f sin (M%) sin (%02 4z°,
o ‘ r 2 32 @)1? . .
o o 'n °
where f(t”) is a pulsed time function such as given by equation (25) but
normalized to unity.
The integration in z” is readily carried out to give
. mz” 28 mwz
f in(g) sin ((p/)dz” = _—sin () m = 1,3,5 ... (30)
o

and the summation over odd m can be rewritten as m -+ 2mt+l. The integration in

r” can only be approximated, using the definite integral

2.2 v

o - b (31)
o 2a)
to give
( )J @ D 2 3 (o 3 o 2
a J o L a o . .~ o' 'na 2 __n
.{ yXip © 03 oxp [— E—E dr” = 21— — exp Ig—]
o [Jo (an)] T, J1 (an)
2
= 'rn:2 Jo (an _a-) exp <— °n >
T o 72 18
37 (@)
(32)
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where we have used the relations Jo (an) =J; (an) and 207 = L 45"

Due to the rapidly decaying nature of the Gaussian the approximation a v in

2 a

the integration limit is quite reasonable.

The integration in t” is done by defining the integral

t
I, = B £ exp (B, t7) £(t7)dt”, (33)
where
[ a2 2.2
8 = o, Qo) ) (34)
om a2 22

Since f(t”) only exists for kT £ t < kTt + Tl the integral Iam reduces to

T T+T
1 o f 1 nde 4 .. 4
Im = Bam_!) exp (Bamt )yde” + ) Bam exp (Bamt Ydt + ...

(k—l)'t-l-'rl
+ B exp (B _t7)dt”
* (k-1 o
t or kT+Tl (35)
+ f Bym €XP (Bamt’)dt’.

kT
The lower limits give the sum

exp [(k+1)By Tl-1
1 - exp (BppD)

-1 - exp (BamT) - exp (28amT) — ees — €Xp (kBamT)

(36)
while the upper limits give

exp (Bamtl) 1+exp (Bamr) + exp (Basz) + ... + exp [(k_l)samT)]l
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[ exp (B, T)
+ o (37
| exp [B, (kT4Ty)]
exp (ksm.r)_l “ exp (Bmt)
= exp (B, Ty) exp (B, T)-1 + (38)

exp [B,, (kKt+1,)]

Combining these results yields

1- exp [(k+1)B, 1] + exp [B (kT +T7;)] - exp (Bypy)
Iam = exp (Bamf) -1

exp (B,,T)

exp [B,, &T + 1)1,

where the two final terms refer respectively to times inside and between pulses,

Putting together equations (29), (30), (32) and (38) gives as the entire
solution

T(xr,z,t) - To =

d

Ko 2 2% (@m+L)Tz I,
k2 Z [(Zm-i-l)n si“( )] Z[“ e (- 1s>3—(—)J

w =

2,2 -
( a“g . )exp ("Bamt [1 exp[ (k+1)8, T]-;exp[Ba R THT) ]-exp (B T;)
o222+(2mH1) 723t exp (Boyt)-1

+ exp(Bmt)‘] (39a)
for kt € t £ kﬂ-’tl

ar



[ (2wtl)n 2 u: Jo(ah E’
Trz, )T, = g @ Gy eta ({227002) z[“'o P \" 18 _'7—"'] x
« J1 (an)
1 a2s? exp (=g ©) ‘l-exp[(k+1)8um“r]+exp[8m(k‘t+'rl)]-exp(a 11)
o2y 2, (2w+1)2n2a2 exp(BpT)~1
+ exp lsm(k‘tﬂl))” (39b)
for k1t1y < t < (kHl)T.

Rearranging the constants and returning to the Iam notation gives

sin (2“’;:1 !'ﬂz u: o(an :) .
(2ut1) expl~-3g) 2§ - P8, 0y, (39¢)

J 1 (an) Bam

elm
=S

T(r,z,t) = To + %

IV. RESULTS

We have used this calculational method for evaluating various irradiation
locations and experimental systems at LAMPF, Figure 2 is a schematic of a
typical result. This plot represents the temperature~time history at the mid-
plane of a metal foil, at the center of the Gaussian beam spot. This result
generalizes and may be extended to an entire family of (r,z) positions which
gives the total temperature profile of the foil at a given time.

The calculation had been done previously by numerical methods on a digital
computer., A comparison of the results from the two methods is shown in Table I.
Run time on a HP-97 calculator for a given time and position (r,z) is approxi-

mately 4 min,

i1
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MAXINUM TEMPERATURE RISE~K
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Figure 2, Schematic of the temperature - time profile of a metal foil under
pulsed irradiation at the foil mid-plane and at the center of a

Gaussian beam spot.

TABLE I

COMPARISON OF THE ANALYTIC AND NUMERICAL TEMPERATURE CALCULATION

Material
')

= " - K
(o]

Time

5x 10
1x 10
2.8 x 10
8.3 x 10

w W w »

12

Aluminum
1 x 10 n
1.94 x 10 °m
8.87 x 1021pm_28_1
0
400 K
Temperature
Numerical Calculator ‘
535.304 535.338 .
494.003 491.702
418,764 416.742
400.154 400.095
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